40 research outputs found

    Mitigating Interference in Content Delivery Networks by Spatial Signal Alignment: The Approach of Shot-Noise Ratio

    Full text link
    Multimedia content especially videos is expected to dominate data traffic in next-generation mobile networks. Caching popular content at the network edge has emerged to be a solution for low-latency content delivery. Compared with the traditional wireless communication, content delivery has a key characteristic that many signals coexisting in the air carry identical popular content. They, however, can interfere with each other at a receiver if their modulation-and-coding (MAC) schemes are adapted to individual channels following the classic approach. To address this issue, we present a novel idea of content adaptive MAC (CAMAC) where adapting MAC schemes to content ensures that all signals carry identical content are encoded using an identical MAC scheme, achieving spatial MAC alignment. Consequently, interference can be harnessed as signals, to improve the reliability of wireless delivery. In the remaining part of the paper, we focus on quantifying the gain CAMAC can bring to a content-delivery network using a stochastic-geometry model. Specifically, content helpers are distributed as a Poisson point process, each of which transmits a file from a content database based on a given popularity distribution. It is discovered that the successful content-delivery probability is closely related to the distribution of the ratio of two independent shot noise processes, named a shot-noise ratio. The distribution itself is an open mathematical problem that we tackle in this work. Using stable-distribution theory and tools from stochastic geometry, the distribution function is derived in closed form. Extending the result in the context of content-delivery networks with CAMAC yields the content-delivery probability in different closed forms. In addition, the gain in the probability due to CAMAC is shown to grow with the level of skewness in the content popularity distribution.Comment: 32 pages, to appear in IEEE Trans. on Wireless Communicatio

    Wireless Data Acquisition for Edge Learning: Data-Importance Aware Retransmission

    Full text link
    By deploying machine-learning algorithms at the network edge, edge learning can leverage the enormous real-time data generated by billions of mobile devices to train AI models, which enable intelligent mobile applications. In this emerging research area, one key direction is to efficiently utilize radio resources for wireless data acquisition to minimize the latency of executing a learning task at an edge server. Along this direction, we consider the specific problem of retransmission decision in each communication round to ensure both reliability and quantity of those training data for accelerating model convergence. To solve the problem, a new retransmission protocol called data-importance aware automatic-repeat-request (importance ARQ) is proposed. Unlike the classic ARQ focusing merely on reliability, importance ARQ selectively retransmits a data sample based on its uncertainty which helps learning and can be measured using the model under training. Underpinning the proposed protocol is a derived elegant communication-learning relation between two corresponding metrics, i.e., signal-to-noise ratio (SNR) and data uncertainty. This relation facilitates the design of a simple threshold based policy for importance ARQ. The policy is first derived based on the classic classifier model of support vector machine (SVM), where the uncertainty of a data sample is measured by its distance to the decision boundary. The policy is then extended to the more complex model of convolutional neural networks (CNN) where data uncertainty is measured by entropy. Extensive experiments have been conducted for both the SVM and CNN using real datasets with balanced and imbalanced distributions. Experimental results demonstrate that importance ARQ effectively copes with channel fading and noise in wireless data acquisition to achieve faster model convergence than the conventional channel-aware ARQ.Comment: This is an updated version: 1) extension to general classifiers; 2) consideration of imbalanced classification in the experiments. Submitted to IEEE Journal for possible publicatio

    Privacy For Free:Wireless Federated Learning Via Uncoded Transmission With Adaptive Power Control

    Get PDF
    Federated Learning (FL) refers to distributed protocols that avoid direct raw data exchange among the participating devices while training for a common learning task. This way, FL can potentially reduce the information on the local data sets that is leaked via communications. In order to provide formal privacy guarantees, however, it is generally necessary to put in place additional masking mechanisms. When FL is implemented in wireless systems via uncoded transmission, the channel noise can directly act as a privacy-inducing mechanism. This paper demonstrates that, as long as the privacy constraint level, measured via differential privacy (DP), is below a threshold that decreases with the signal-to-noise ratio (SNR), uncoded transmission achieves privacy "for free", i.e., without affecting the learning performance. More generally, this work studies adaptive power allocation (PA) for decentralized gradient descent in wireless FL with the aim of minimizing the learning optimality gap under privacy and power constraints. Both orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) transmission with "over-the-air-computing" are studied, and solutions are obtained in closed form for an offline optimization setting. Furthermore, heuristic online methods are proposed that leverage iterative one-step-ahead optimization. The importance of dynamic PA and the potential benefits of NOMA versus OMA are demonstrated through extensive simulations.Comment: Published in IEEE Journal on Selected Areas in Communications ( Volume: 39, Issue: 1, Jan. 2021) DOI: 10.1109/JSAC.2020.303694

    Wireless federated Langevin Monte Carlo: repurposing channel noise for Bayesian sampling and privacy

    Get PDF
    Most works on federated learning (FL) focus on the most common frequentist formulation of learning whereby the goal is minimizing the global empirical loss. Frequentist learning, however, is known to be problematic in the regime of limited data as it fails to quantify epistemic uncertainty in prediction. Bayesian learning provides a principled solution to this problem by shifting the optimization domain to the space of distribution in the model parameters. This paper proposes a novel mechanism for the efficient implementation of Bayesian learning in wireless systems. Specifically, we focus on a standard gradient-based Markov Chain Monte Carlo (MCMC) method, namely Langevin Monte Carlo (LMC), and we introduce a novel protocol, termed Wireless Federated LMC (WFLMC), that is able to repurpose channel noise for the double role of seed randomness for MCMC sampling and of privacy preservation. To this end, based on the analysis of the Wasserstein distance between sample distribution and global posterior distribution under privacy and power constraints, we introduce a power allocation strategy as the solution of a convex program. The analysis identifies distinct operating regimes in which the performance of the system is power-limited, privacy-limited, or limited by the requirement of MCMC sampling. Both analytical and simulation results demonstrate that, if the channel noise is properly accounted for under suitable conditions, it can be fully repurposed for both MCMC sampling and privacy preservation, obtaining the same performance as in an ideal communication setting that is not subject to privacy constraints

    Bayesian Over-the-Air FedAvg via Channel Driven Stochastic Gradient Langevin Dynamics

    Full text link
    The recent development of scalable Bayesian inference methods has renewed interest in the adoption of Bayesian learning as an alternative to conventional frequentist learning that offers improved model calibration via uncertainty quantification. Recently, federated averaging Langevin dynamics (FALD) was introduced as a variant of federated averaging that can efficiently implement distributed Bayesian learning in the presence of noiseless communications. In this paper, we propose wireless FALD (WFALD), a novel protocol that realizes FALD in wireless systems by integrating over-the-air computation and channel-driven sampling for Monte Carlo updates. Unlike prior work on wireless Bayesian learning, WFALD enables (\emph{i}) multiple local updates between communication rounds; and (\emph{ii}) stochastic gradients computed by mini-batch. A convergence analysis is presented in terms of the 2-Wasserstein distance between the samples produced by WFALD and the targeted global posterior distribution. Analysis and experiments show that, when the signal-to-noise ratio is sufficiently large, channel noise can be fully repurposed for Monte Carlo sampling, thus entailing no loss in performance.Comment: 6 pages, 4 figures, 26 references, submitte

    Wireless Federated Langevin Monte Carlo: Repurposing Channel Noise for Bayesian Sampling and Privacy

    Get PDF
    Most works on federated learning (FL) focus on the most common frequentist formulation of learning whereby the goal is minimizing the global empirical loss. Frequentist learning, however, is known to be problematic in the regime of limited data as it fails to quantify epistemic uncertainty in prediction. Bayesian learning provides a principled solution to this problem by shifting the optimization domain to the space of distribution in the model parameters. {\color{black}This paper proposes a novel mechanism for the efficient implementation of Bayesian learning in wireless systems. Specifically, we focus on a standard gradient-based Markov Chain Monte Carlo (MCMC) method, namely Langevin Monte Carlo (LMC), and we introduce a novel protocol, termed Wireless Federated LMC (WFLMC), that is able to repurpose channel noise for the double role of seed randomness for MCMC sampling and of privacy preservation.} To this end, based on the analysis of the Wasserstein distance between sample distribution and global posterior distribution under privacy and power constraints, we introduce a power allocation strategy as the solution of a convex program. The analysis identifies distinct operating regimes in which the performance of the system is power-limited, privacy-limited, or limited by the requirement of MCMC sampling. Both analytical and simulation results demonstrate that, if the channel noise is properly accounted for under suitable conditions, it can be fully repurposed for both MCMC sampling and privacy preservation, obtaining the same performance as in an ideal communication setting that is not subject to privacy constraints.Comment: submitte

    Leveraging Channel Noise for Sampling and Privacy via Quantized Federated Langevin Monte Carlo

    No full text
    For engineering applications of artificial intelligence, Bayesian learning holds significant advantages over standard frequentist learning, including the capacity to quantify uncertainty. Langevin Monte Carlo (LMC) is an efficient gradient-based approximate Bayesian learning strategy that aims at producing samples drawn from the posterior distribution of the model parameters. Prior work focused on a distributed implementation of LMC over a multi-access wireless channel via analog modulation. In contrast, this paper proposes quantized federated LMC (FLMC), which integrates one-bit stochastic quantization of the local gradients with channel-driven sampling. Channel-driven sampling leverages channel noise for the purpose of contributing to Monte Carlo sampling, while also serving the role of privacy mechanism. Analog and digital implementations of wireless LMC are compared as a function of differential privacy (DP) requirements, revealing the advantages of the latter at sufficiently high signal-to-noise ratio.Comment: 5 pages, 4 figures, submitte
    corecore